3.491 \(\int x \sqrt {1+x} \sqrt {1-x+x^2} \, dx\)

Optimal. Leaf size=294 \[ \frac {2}{7} \sqrt {x+1} \sqrt {x^2-x+1} x^2+\frac {6 \sqrt {x+1} \sqrt {x^2-x+1}}{7 \left (x+\sqrt {3}+1\right )}+\frac {2 \sqrt {2} 3^{3/4} (x+1)^{3/2} \sqrt {x^2-x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (x^3+1\right )}-\frac {3 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1)^{3/2} \sqrt {x^2-x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (x^3+1\right )} \]

[Out]

2/7*x^2*(1+x)^(1/2)*(x^2-x+1)^(1/2)+6/7*(1+x)^(1/2)*(x^2-x+1)^(1/2)/(1+x+3^(1/2))+2/7*3^(3/4)*(1+x)^(3/2)*Elli
pticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*2^(1/2)*(x^2-x+1)^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(x^
3+1)/((1+x)/(1+x+3^(1/2))^2)^(1/2)-3/7*3^(1/4)*(1+x)^(3/2)*EllipticE((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I
)*(x^2-x+1)^(1/2)*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)/((1+x)/(1+x+3^(1/2))^2)^
(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 294, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {809, 279, 303, 218, 1877} \[ \frac {2}{7} \sqrt {x+1} \sqrt {x^2-x+1} x^2+\frac {6 \sqrt {x+1} \sqrt {x^2-x+1}}{7 \left (x+\sqrt {3}+1\right )}+\frac {2 \sqrt {2} 3^{3/4} (x+1)^{3/2} \sqrt {x^2-x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (x^3+1\right )}-\frac {3 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1)^{3/2} \sqrt {x^2-x+1} \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (x^3+1\right )} \]

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[1 + x]*Sqrt[1 - x + x^2],x]

[Out]

(2*x^2*Sqrt[1 + x]*Sqrt[1 - x + x^2])/7 + (6*Sqrt[1 + x]*Sqrt[1 - x + x^2])/(7*(1 + Sqrt[3] + x)) - (3*3^(1/4)
*Sqrt[2 - Sqrt[3]]*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1
 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3)) + (2*Sqrt
[2]*3^(3/4)*(1 + x)^(3/2)*Sqrt[1 - x + x^2]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt
[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(7*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*(1 + x^3))

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 279

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
n*p + 1)), x] + Dist[(a*n*p)/(m + n*p + 1), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 303

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(Sq
rt[2]*s)/(Sqrt[2 + Sqrt[3]]*r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a +
 b*x^3], x], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 809

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[
((d + e*x)^FracPart[p]*(a + b*x + c*x^2)^FracPart[p])/(a*d + c*e*x^3)^FracPart[p], Int[(f + g*x)*(a*d + c*e*x^
3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[m, p] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0]

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin {align*} \int x \sqrt {1+x} \sqrt {1-x+x^2} \, dx &=\frac {\left (\sqrt {1+x} \sqrt {1-x+x^2}\right ) \int x \sqrt {1+x^3} \, dx}{\sqrt {1+x^3}}\\ &=\frac {2}{7} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {\left (3 \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {x}{\sqrt {1+x^3}} \, dx}{7 \sqrt {1+x^3}}\\ &=\frac {2}{7} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {\left (3 \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {1-\sqrt {3}+x}{\sqrt {1+x^3}} \, dx}{7 \sqrt {1+x^3}}+\frac {\left (3 \sqrt {2 \left (2-\sqrt {3}\right )} \sqrt {1+x} \sqrt {1-x+x^2}\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx}{7 \sqrt {1+x^3}}\\ &=\frac {2}{7} x^2 \sqrt {1+x} \sqrt {1-x+x^2}+\frac {6 \sqrt {1+x} \sqrt {1-x+x^2}}{7 \left (1+\sqrt {3}+x\right )}-\frac {3 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )}+\frac {2 \sqrt {2} 3^{3/4} (1+x)^{3/2} \sqrt {1-x+x^2} \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{7 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \left (1+x^3\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.51, size = 347, normalized size = 1.18 \[ \frac {\sqrt {x+1} \left (4 \sqrt {-\frac {i (x+1)}{\sqrt {3}+3 i}} \left (x^2-x+1\right ) x^2+3 \sqrt {2} \left (\sqrt {3}-i\right ) \sqrt {\frac {-2 i x+\sqrt {3}+i}{\sqrt {3}+3 i}} \sqrt {\frac {2 i x+\sqrt {3}-i}{\sqrt {3}-3 i}} F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {-\frac {i (x+1)}{3 i+\sqrt {3}}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )-3 \sqrt {2} \left (\sqrt {3}-3 i\right ) \sqrt {\frac {-2 i x+\sqrt {3}+i}{\sqrt {3}+3 i}} \sqrt {\frac {2 i x+\sqrt {3}-i}{\sqrt {3}-3 i}} E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {-\frac {i (x+1)}{3 i+\sqrt {3}}}\right )|\frac {3 i+\sqrt {3}}{3 i-\sqrt {3}}\right )\right )}{14 \sqrt {-\frac {i (x+1)}{\sqrt {3}+3 i}} \sqrt {x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[1 + x]*Sqrt[1 - x + x^2],x]

[Out]

(Sqrt[1 + x]*(4*x^2*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]*(1 - x + x^2) - 3*Sqrt[2]*(-3*I + Sqrt[3])*Sqrt[(I +
Sqrt[3] - (2*I)*x)/(3*I + Sqrt[3])]*Sqrt[(-I + Sqrt[3] + (2*I)*x)/(-3*I + Sqrt[3])]*EllipticE[I*ArcSinh[Sqrt[2
]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*I - Sqrt[3])] + 3*Sqrt[2]*(-I + Sqrt[3])*Sqrt[(I +
 Sqrt[3] - (2*I)*x)/(3*I + Sqrt[3])]*Sqrt[(-I + Sqrt[3] + (2*I)*x)/(-3*I + Sqrt[3])]*EllipticF[I*ArcSinh[Sqrt[
2]*Sqrt[((-I)*(1 + x))/(3*I + Sqrt[3])]], (3*I + Sqrt[3])/(3*I - Sqrt[3])]))/(14*Sqrt[((-I)*(1 + x))/(3*I + Sq
rt[3])]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

fricas [F]  time = 0.96, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {x^{2} - x + 1} \sqrt {x + 1} x, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(1+x)^(1/2)*(x^2-x+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^2 - x + 1)*sqrt(x + 1)*x, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {x^{2} - x + 1} \sqrt {x + 1} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(1+x)^(1/2)*(x^2-x+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(x^2 - x + 1)*sqrt(x + 1)*x, x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 361, normalized size = 1.23 \[ \frac {\sqrt {x +1}\, \sqrt {x^{2}-x +1}\, \left (2 x^{5}+2 x^{2}-18 \sqrt {-\frac {2 \left (x +1\right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {-2 x +i \sqrt {3}+1}{i \sqrt {3}+3}}\, \sqrt {\frac {2 x +i \sqrt {3}-1}{-3+i \sqrt {3}}}\, \EllipticE \left (\sqrt {-\frac {2 \left (x +1\right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )+3 i \sqrt {3}\, \sqrt {-\frac {2 \left (x +1\right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {-2 x +i \sqrt {3}+1}{i \sqrt {3}+3}}\, \sqrt {\frac {2 x +i \sqrt {3}-1}{-3+i \sqrt {3}}}\, \EllipticF \left (\sqrt {-\frac {2 \left (x +1\right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )+9 \sqrt {-\frac {2 \left (x +1\right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {-2 x +i \sqrt {3}+1}{i \sqrt {3}+3}}\, \sqrt {\frac {2 x +i \sqrt {3}-1}{-3+i \sqrt {3}}}\, \EllipticF \left (\sqrt {-\frac {2 \left (x +1\right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right )\right )}{7 x^{3}+7} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(x+1)^(1/2)*(x^2-x+1)^(1/2),x)

[Out]

1/7*(x+1)^(1/2)*(x^2-x+1)^(1/2)*(3*I*3^(1/2)*(-2*(x+1)/(-3+I*3^(1/2)))^(1/2)*((-2*x+I*3^(1/2)+1)/(I*3^(1/2)+3)
)^(1/2)*((2*x+I*3^(1/2)-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(x+1)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I
*3^(1/2)+3))^(1/2))+2*x^5+9*(-2*(x+1)/(-3+I*3^(1/2)))^(1/2)*((-2*x+I*3^(1/2)+1)/(I*3^(1/2)+3))^(1/2)*((2*x+I*3
^(1/2)-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(x+1)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2
))-18*(-2*(x+1)/(-3+I*3^(1/2)))^(1/2)*((-2*x+I*3^(1/2)+1)/(I*3^(1/2)+3))^(1/2)*((2*x+I*3^(1/2)-1)/(-3+I*3^(1/2
)))^(1/2)*EllipticE((-2*(x+1)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))+2*x^2)/(x^3+1)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {x^{2} - x + 1} \sqrt {x + 1} x\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(1+x)^(1/2)*(x^2-x+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(x^2 - x + 1)*sqrt(x + 1)*x, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int x\,\sqrt {x+1}\,\sqrt {x^2-x+1} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(x + 1)^(1/2)*(x^2 - x + 1)^(1/2),x)

[Out]

int(x*(x + 1)^(1/2)*(x^2 - x + 1)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \sqrt {x + 1} \sqrt {x^{2} - x + 1}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(1+x)**(1/2)*(x**2-x+1)**(1/2),x)

[Out]

Integral(x*sqrt(x + 1)*sqrt(x**2 - x + 1), x)

________________________________________________________________________________________